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Abstract: Advances in high-throughput virtual screening using docking, predictive ADME methods and their
integration with informatics and high-performance computing are reviewed. Docking approaches have led to
the identification of novel active compounds. Predictive ADME  methods have improved on selective test sets
with broader training sets, though extensive validation is lacking.
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VIRTUAL SCREENING AND DRUG DISCOVERY

Pharmaceutical companies are adopting a new paradigm
of integrating computational and experimental technologies
earlier in the drug discovery process [1-4]. This new
paradigm is a response to the problem that the development
of new drugs is not getting more efficient despite significant
investment in research and technologies by the
pharmaceutical industry [5, 6]. The failure or attrition rates
of compounds during the course of drug development is
typically high, [6] and previous major technologies such as
combinatorial chemistry and high throughput screening
(HTS) by themselves have not delivered as promised [3-6].

The current solution to problems in the drug-discovery
process is seen as better utilization of genomic, chemical,
biological, structural, and molecular property information
earlier, [7] and improved management of procedural
bottlenecks [8, 9]. Better utilization of information, in
particular, plays an important role in designing chemical
libraries that have more desirable chemical and biological
properties, [5, 10] and are therefore more likely to contain
compounds that can survive primary in vitro and secondary
in vivo screens [11, 12]. A current approach to this problem
is the integration of information from many areas such as
gene or protein family analysis for target selection, virtual
screening (VS), structural biology, medicinal chemistry, and
ADME as shown in (Fig. 1).

VS in particular is emerging as a key strategy to help
filter out compounds with poor potency, and biological or
pharmacological properties [7, 13, 14]. There are two key
factors driving the importance of using and developing VS
methods to decide on which compounds to progress to in
vitro and in vivo screening. First, chemical space is massive
and chemical library size quickly becomes an issue. For
example, a three-component reaction with 100 reagents per
component results in a combinatorial library with
100x100x100 (106) products. There have been estimates that
the size of chemical space appropriate for drugs is
theoretically > 1018, [13] and only computational methods
are able to address this problem. Second, experimental
screening is expensive and time consuming. Predicting
chemical and biological properties with VS methods can in
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principle identify compounds that are likely to fail in
primary, secondary and further downstream screens at a
significantly lower cost than experiments.

VS methods, though far from perfect, can be used to
reduce the possibilities in chemical space to a manageable
number of potent and "drug-like" candidates for lead
discovery and optimization [13, 15]. These methods have
grown to include 2D searches of databases, [16] structure-
based screening (receptor docking, [17-19] pharmacophore
screening [20]), and predictive ADME [21]. Receptor
docking, in particular, has grown in importance not only due
to advances in methodology, but also due to the availability
of many new 3D protein structures of drug targets [13, 17-
20, 22-26]. The advent of high performance computing and
fast docking algorithms, in addition, have allowed database
screening to be more routine. Other important
pharmacophore or fragment (de novo) based methods will
not be discussed in this review, but have been reviewed
elsewhere in detail [16, 27].

A key element in an integrated approach to drug
discovery is the concept of property-based drug design, [28-
30] where efforts are made earlier to optimize for
fundamental drug properties such as aqueous solubility and
permeability. The goal is that by incorporating a variety of
predictive ADME filters into the virtual screening workflow,
it will be possible to address ADME issues early on and
reduce the downstream failure rates of drug candidates due to
poor pharmacokinetic properties.

Drug-discovery programs produce a significant amount of
information (for example, structure-activity relationships,
NMR, crystallography, in vitro and in vivo data) that can be
leveraged by VS for more effective predictions. Conversely,
data from VS such as predicted binding mode patterns can
also be "mined" for useful clues that can be used to design
libraries with improved hit rates. The informatics
infrastructure to support and analyze experimental and virtual
data will clearly be important and enable faster and better
decisions for the next library design cycle (Fig. 1). In the
new drug-discovery paradigm, VS is a complement to
experimental technologies, which is useful in influencing the
direction of the drug-design program towards the desired
goal in addition to predicting actives from non-actives in a
given screen [3, 7, 9, 14, 31]. Our review will therefore
highlight recent work in target selection, fast library
enumeration, predictive ADME, structure-based docking
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Fig. (1). A schematic showing the integration of VS with a parallel drug-discovery paradigm.

(including scoring functions), and informatics infrastructure
that support high throughput VS.

TARGET SELECTION AND GENE-FAMILIES

The Boston Consulting Group (BCG) has estimated that
the current number of known protein targets amenable to VS
using structure-based drug design is 30% [32]. This number
is expected to rise dramatically with the advent of structural
genomics and homology modeling initiatives [33]. To date,
the drug industry has focused on only 483 drug targets, [5]
and the sequencing of the 30,000 genes in the human
genome [34, 35] has generated a wealth of potential new
drug targets for the pharmaceutical industry. It is not clear,
however, how many of these new targets are amenable to
small molecule intervention ("druggable"). Bailey et al. [36]
estimate the number of druggable targets in the human
genome to be >10,000 by assessing the number of proteins
with ligand binding domains, however, estimates using
other criteria are much lower [5, 37]. Several groups are
developing databases of protein-binding sites to be used to
prioritize the druggability of the target [38]. The gene-family
concept is emerging as a powerful paradigm to accelerate
drug discovery through leveraging structural insights into
druggability and transferability of chemotypes amongst
related drug targets [39]. VS methods are therefore poised to
play an important role in addressing the increased number of
targets with structure.

BUILDING AND FAST ENUMERATION OF
VIRTUAL LIBRARIES

Electronic methods for building in silico chemical
libraries by 'reaction' or 'Markush' representations can be
performed with standard chemical drawing packages such as
IsisDraw [40] and ChemDraw [41]. For example, a Markush
library can be drawn in ISISDraw as a core and R-groups
(including nested R-groups) descriptions [40]. The Markush
description can then be enumerated or assembled into
compounds by algorithms [10]. The massive number of
compounds that can result from virtual libraries, however,
present particular problems for enumeration and molecular

property calculations [10]. Fast methods for enumerating
very large virtual libraries and computing molecular
properties have therefore emerged to compliment the
throughput of VS methods.

An example of a fast enumeration method of Markush
library definitions has been developed by Barnard, [42] and
is based on string concatenation. The method quickly
assembles molecules and computes limited properties (MW,
LogP, number of hydrogen-bond donors and acceptors) by
adding the values of the fragments (computed on the fly) in
the Markush definition to the final enumerated compound.
The speed of the enumeration for Markush libraries is very
fast. We tested the method by enumerating and calculating
the Lipinski properties of a 1 million compound library and
found that it took only 20 seconds using an SGI R10000
workstation.

Another approach for fast library enumeration called
combinatorial networks involves first building a diverse
representation of a library definition, second developing a
neural network model on the initial set, and third using the
model to forecast the structures and properties of the
remaining molecules in the library [43]. The authors
compared the results from their approach to that from fully
enumerated methods and showed that the chemical and
property space spanned by the systematic and predicted
methods were very similar. The method, however, works
best when the library is relatively similar chemically—as
might be found in combinatorial libraries—and may not be
appropriate for libraries with very different structures of
molecules.

PREDICTIVE DRUG LIKENESS AND IN VIVO
EFFECTS

This section will discuss filters that may be used to
incorporate good ADME properties into compound libraries
at the outset of an integrated drug-discovery program. For
ADME filters to be most effective (predictive) for VS they
should optimally meet the following criteria: 1) be rapid
enough to deal effectively with millions of structures; 2) be
appropriate for relevant drug compounds (that is, as opposed
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to models that are based on non-drug data); 3) be sufficiently
flexible so that they can be quickly updated as new data
become available. Ideally a "toolbox" of filters would be at
our disposal, ranging from very general filters to select
"drug-like" molecules (which we will describe below) for
initial lead discovery applications, to custom models
designed to identify molecules with specific properties, e.g.,
central nervous system (CNS) activity. In order to satisfy the
first criterion, this section will focus on methods that do not
require 3D molecular coordinates, but rather, depend only on
1D (based on molecular composition) and 2D (based on
atomic connectivity) descriptors. In contrast, two examples
of well-known approaches that rely on 3D structure are the
VolSurf methodology developed by Cruciani et al. [44] and
modeling of P450 mediated drug metabolism by Ekins and
co-workers [45]. VolSurf requires the computation of 3D
interaction energy grids with a set of atomic probes to arrive
at a set of descriptors used for model building whereas the
P450 models may involve homology modeling,
pharmacophore modeling, and the generation of 3D-
quantitative structure-activity relationships. Although both
approaches have produced good results in a variety of
applications, [46-49] the computational overhead associated
with descriptor generation renders them unsuitable to profile
large virtual libraries fast.

Prediction of Drug-Likeness

As pointed out by several authors, "drug like" is not a
precisely defined term [11, 50]. In general, however, "drug
like" refers to the similarity between a molecule and a set of
known drugs, quantified using descriptors based on
molecular structure (atom types, functional groups,
molecular topology, and common drug frameworks) and
global physicochemical properties. Recent reviews have
appeared on the prediction of drug-likeness, [50, 51] and the
generation of drug-like libraries [11]. The most widely
adopted rules for filtering compound libraries were derived
by Lipinski, based on counting criteria of physicochemical
properties correlated to poor absorption [52]. More recently,
Wenlock et al. [53] have carried out an analysis of the
physicochemical property profiles of oral drugs. The mean
molecular weight of drugs was found to decrease in
successive phases of clinical development converging to the
mean value of those already in the market. In addition to
molecular weight, lipophilicity was also found to be a
limiting factor in development, supporting the work of
Lipinski.

A variety of methods have been employed to tackle the
drug-like recognition problem including classification
models based on structural decision trees, [54]
pharmacophore point filters based on simple structural rules,
[55] as well as various rule-based filters (counting methods)
based on the properties of known drugs [52, 56, 57]. Some
of the more successful approaches are based on neural
networks, which are able to recognize approximately 77-90%
of compounds in drug databases [58-60] depending on the
method, while having a mis-classification rate of
approximately 10-18% [61-64]. An interesting alternative to
the various neural network based approaches employs a
pharmacophore point filter based on simple structural rules
[55]. At the expense of accuracy, the approach provides a

structural rationale for the drug/non-drug classification. As
pointed out by Walters and Murcko, [50] the generation of
"local" filters optimized to recognize on particular sub-
classes of drugs may offer improved performance over global
drug-like filters.

Prediction of Intestinal Absorption and Oral
Bioavailability

Computational methods to predict oral absorption have
been reviewed recently [30, 65-69]. The challenges in
predicting oral absorption from molecular structure have
been discussed by Burton et al. [70]. In particular, they
highlight the importance in discriminating between
intestinal absorption, permeability, fraction absorbed (FA),
and oral bioavailability (OBA) when constructing structure-
based predictive models. OBA indicates the fraction of the
oral dose that reaches systemic circulation and is therefore
influenced by intestinal absorption and metabolism. The
drug’s intestinal absorption, in turn, depends on its chemical
stability, solubility, and membrane permeability.
Consequently, high aqueous solubility can compensate for
poor permeability and lead to acceptable intestinal
absorption, complicating efforts to use permeability alone as
a surrogate for intestinal absorption.

Prediction of drug solubility has recently attracted the
attention of several reviewers [11, 68, 71]. The problematic
nature of experimental solubility data must be addressed in
efforts to derive predictive models as variations in pH,
crystalline form, and experimental conditions can all lead to
significant uncertainty in reported values [71]. Recently,
Enqkvist et al. [72] have built a solubility model using a
neural network trained on 3042 molecules from the
PHYSPROP [73] database. The final model utilized 63 1D
and 2D descriptors and yielded an r2=0.86 for an external
validation set of 307 molecules. Also using a set of 1D and
2D descriptors, Liu et al. [74] generated a predictive
solubility model based on 1312 organic compounds
compiled from the AQUASOL [75] and PHYSPROP [73]
databases. The model achieved a correlation coefficient of
0.93 when tested against a validation set of 258 randomly
selected compounds set aside from the initial training set.

Particular attention has been devoted to the use of
molecular surface properties alone or in combination with
other descriptors to model permeability and its relationship
to intestinal absorption [30, 76-83]. Results obtained from
rapid fragment based methods for computation of polar
surface area (PSA) has been shown to be comparable to
methods requiring 3D structure generation [84-86].
Approaches not based primarily on molecular surface
properties to model permeability include quantitative
structure property relationship (QSPR) models based on 3D
descriptors, [87] topological descriptors, [88] and Abraham’s
free energy descriptors to model solvation. [89-91]

In addition to approaching the prediction of absorption
via permeability, models have been derived to yield a direct
prediction of human intestinal absorption (HIA) from
molecular structure. Wessel et al. [92] have used literature
values of FA of 86 drug and drug-like molecules to derive
and validate a QSPR model. The dataset was divided into
76 compounds for model development and 10 compounds
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Table 1. Examples of New or Popular High Throughput Docking Methods for VS

Method aReceptor Ligand Conformers Automatic bFilter or cConstraint Reference

DOCK Rigid On the Fly/Precompute Filter/Constraint [106]

AutoDock Rigid On the Fly Filter [107]

Gold Rigid On the Fly Constraint [108]

ICM Rigid/Flexible On the Fly Filter/Constraint [109]

FlexX Rigid On the Fly None [110]

FlexPharm Rigid On the Fly Filter [111]

FlexE Ensemble On the Fly None [112]

Fred Rigid Precompute Filter [113]

Glide Rigid On the Fly Filter [114]

LigandFit Rigid On the Fly None [115]

EUDOC Rigid Single 3D None [116]
aA receptor is rigid or flexible in that discrete conformations of the receptor are explored automatically by the docking algorithm. In principle, grid-based methods such as
AutoDock, DOCK, and LigandFit can approximate flexible receptors by weighting the grid locations by the average effect of multiple conformations. bWe define a filter as
using a criteria to eliminate compounds before or after the compound has been optimized by the docking algorithm. cWe define a constraint as a term that is a part of the
main function being optimized by the docking algorithm.

for validation, where the validation set was not used in the
model development process and was chosen to span the
range of 5-100% HIA. The final model was based on six 2D
and 3D descriptors and had a root mean square (RMS) error
16% HIA for the validation set. This same data set was
modeled by Niwa [93] using 2D topological descriptors
rather than the 3D molecular surface descriptors used by
Wessel. Although the RMS error of 22.8% obtained using
the same validation set is poorer than that obtained by
Wessel, greater throughput is afforded by eliminating the
need for 3D structure generation.

The molecular property profiles for over 1100 drug
candidates studied at SmithKline Beecham Pharmaceuticals
(now GlaxoSmithKline) have been analyzed in order to
gauge their relative importance in influencing OBA [94].
Low molecular flexibility (number of rotatable bonds ≤ 10)
and PSA ≤ 140) were found to be the most significant
determinants of OBA. Yoshida and Topliss [95] have
derived a QSPR model, based on 1D and 2D descriptors and
counting rules, for human OBA from literature data for 232
drugs. In order to account for experimental variability, the
OBA data was divided into four classes based on activity.
The final model was able to correctly classify 60% of a 40
compound validation set not included in model
development. Andrews et al. [96] have also developed a
QSPR model for human OBA applying 85 substructure
descriptors to model data (literature and internal) for 591
compounds. The model was found to have a leave-one-out
cross-validated r2=0.63, with an RMS error of 20.4%
averaged over 2000 random selections of a prediction set (a
20% subset of the total dataset). In comparison with
classification using the Lipinski "Rule of 5", the QSPR
model returns a significantly lower number of false positive
classifications.

Prediction of CNS activity

Computational methods developed to predict blood brain
barrier (BBB) penetration have been reviewed recently [51,

67, 97-99]. In general, the descriptors that play an important
role in reported QSPR models describe the lipophilicity,
hydrogen-bonding potential, and molecular bulkiness. [100-
102] Particularly appealing for its simplicity is Clark’s
QSPR model for the log of the blood-brain partition
coefficient (logBB) derived from a set of 55 diverse organic
compounds using only PSA and calculated logP. [100] Ajay
et al. [103] have reported a filter based on 1D and 2D
descriptors aimed to design CNS-active libraries. Moreover,
Engkvist et al. [102] have demonstrated that a substructure
analysis approach, based on exhaustive enumeration of 2D
chemical fragments up to a prescribed size, is able to
perform as well as (80% accuracy) neural network based
approaches.

STRUCTURE-BASED VIRTUAL SCREENING

Recent and Popular Methods for Docking

For the purpose of this review, we will refer to methods
appropriate for high throughput receptor-based VS simply as
'docking'. These docking methods have increased in
popularity as a response to the increased throughput of
combinatorial chemistry technologies and the availability of
3D structures of drug targets [13, 17, 18, 26, 31]. The goal
of docking is to predict quickly (1-2 min/molecule) the
binding mode and binding affinity of molecules to a receptor
target. The primary problem in docking is that the scoring
functions used with these methods for ranking ligand
binding do not properly capture all of the possible events (or
the relative contributions among these events) that can
contribute to binding. The hope is, nevertheless, that these
functions capture most of the important events (e.g.
complimentary fit, hydrogen bonds) for the system studied,
and that there is a significant probability that the analyst
will find more true actives than false positives or negatives.

Table 1 lists some, but not all, of the more popular or
recently developed methods. As details of the algorithms
used in these methods can be found in the literature, we have
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Table 2. Examples of where Docking has Produced Previously Unknown Leads from Database Screens

Ligand Structure Target Method Assay Reference
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ICM 1.5 µM (IC50) [125]

chosen to categorize these methods based on how the
receptor and ligands are treated, and if any constraints [104]
or filters [105] are used during the screening, as we feel that
these attributes may help the reader choose a method for a
particular system.

As can be seen in Table 1 , the receptor is usually
described as fixed during the screening, but methods such as
ICM and FlexE introduce receptor flexibility during a
docking run (although flexibility can be addressed in part by
the other methods by multiple docking runs of different
receptor conformation). ICM, however, can introduce side-
chain flexibility as another variable during ligand docking.
We note that molecular mechanics methods such as

CHARMM [117] and AMBER [118] can also in principle
introduce full flexibility into the docking process, but the
suitability of these programs to VS has not yet fully
matured.

Most methods in Table 1 can introduce ligand flexibility
during the docking process, while FRED and DOCK can use
pre-computed ligand conformers (usually computed without
the receptor present). The primary advantage of pre-computed
conformers is speed, as the conformers are generated once,
and only translational and rotational degrees of freedom are
explored during docking. The disadvantage is that the true
conformation of the binding mode in the receptor may not
be contained within the pre-computed conformers (which are
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typically done in the gas phase), and conformer pre-
generation introduces another computational complexity in
the VS process. Using experimental knowledge during VS
can be an important advantage during an integrated drug-
discovery program. To this end, Glide, FlexPharm, Fred,
ICM, and DOCK allow the user to automatically filter out
compounds either before or after they are scored that do not,
for example, satisfy particular geometrical arrangements of
ligand and receptor atoms. ICM, Gold, and DOCK can also
include a constraint as part of the scoring function that is
optimized during the docking. For example, particular
hydrogen bond-formations or ligand conformations can be
biased to occur during the docking process.

Database Screening Applications

More examples of identifying previously unknown active
compounds from the docking of databases are being
published. In addition, several publications have compared
multiple, but not all, methods for their ability to
discriminate known binders from among randomly selected
and assumed to be non-binders. A review of the types of
targets, docking procedure, and validated predictions of the
docking applications follows, and representative examples of
the types of novel compounds found from docking are
shown in Table 2.

DOCK was used to identify µM leads for the HIV-1
envelope glycoprotein (gp41) from a commercially available
database of 20,000 compounds from ComGenex Inc. (Table
2) [119]. The target of the structure-based docking strategy
was a deep hydrophobic pocket identified within the X-ray
structure of gp41. CONCORD [120] was used to
precompute the global minimum 3D conformation (as
judged by CONCORD) for each molecule in the database.
The 3D database was then docked into a rigid receptor and
analyzed.

The authors then selected the top 200 scoring ligands
from DOCK, and used 3D stereo visualization to further
filter those compounds that had appropriate interactions with
the receptor (e.g. atomic shape similarity and hydrogen
bonds). This visual analysis led the authors to select 16
compounds for inhibition activity by ELISA. Two
compounds were found to have low (0.73 and 3.18 µg/ml)
IC50 inhibition (Table 2), while the other 14 were >100
µg/ml. An interesting observation is that the two low µM
compounds had MW of 1177 and 802 respectively, while
the other non-binders were no greater than 660 MW. This
observation suggests the scoring function in DOCK, a sum
of van der Waals and Coulombic terms, is suitable for this
system that seems to discriminate ligands based roughly on
size; a result that is not always expected due to the potential
bias in this function to molecular size.

A direct comparison of HTS and docking screening
against tyrosine phosphatase-1B (PTP1B) was done by
Doman and coworkers [121]. PTP1B is an enzyme that
hydrolyzes phosphotyrosines on the insulin receptor
resulting in deactivation. The Northwestern version [126] of
DOCK 3.5 [127] was used to identify 127 compounds with
<100 µM IC50 from a database comprising ACD, BioSpecs,
and Maybridge with a hit rate of 34.8% (Table 2).

The HTS screen yielded 85 compounds <100 µM with a
hit rate of 0.021% using the corporate database of
Pharmacia. The conformations of the ligands for docking
were precomputed (an average of 345 conformations per
molecule) and stored in a database. The 19.5 billion docked
complexes were filtered by steric fit followed by scoring
with van der Waals and electrostatic terms that were
corrected for apolar and polar desolvation energies. An
interesting finding by the authors is that the hits from
docking were more "drug like" than those from HTS as
judged by Lipinski parameters. This observation, however,
may have resulted from the fact that corporate databases are
more likely to be "drug like" as compared to the
commercially available compounds used above for docking,
which are more "lead like" and therefore less likely to violate
the Lipinski rules [15]. The results from docking were
nevertheless different chemically and structurally than those
from HTS, which highlights the complementarities of the
methods.

Perola and coworkers used the program EUDOC to
perform a database screen to identify 21 compounds that had
µM inhibition to Farnesyltransferase (FT) (four in the range
of 25-100 µM) [123]. FT is characterized by a Zn atom that
is the center of catalytic activity in its binding site. Classes
of proteins that contain Zn or other metals in the active site
that interact with a ligand such as FT are a challenging case
for docking as few scoring functions adequately account for
metal-ligand interactions. Their approach was to use a series
of filtering steps to remove compounds that are reactive,
receptor specific (e.g. remove zwitterionic compounds) and
outside the molecular weight range of most drugs (300-700)
from the ACD 3D database. The remaining compounds were
docked with their program EUDOC into the
Farnesyltransferase (FT) receptor including the Zn atom in
the active site. The scoring function they used was the
Cornell et al. version of the AMBER force field, [128]
which contains parameters for Zn binding and other metals.
Compounds that had docked scores < -35 kcal/mol
(AMBER) were selected for more detailed docking studies;
compounds with subsequent scores < -45 kcal/mol were
selected for further studies. These remaining compounds
were then filtered using AMSOL [129] to remove
compounds that were too hydrophobic (solvation energies
greater than that of neopentane, 2.5 kcal/mol). The final
binding energy of the docked compounds was estimated as
the EUDOC interaction energy (van der Waals and
Coulombic terms from AMBER) minus the AMSOL
solvation energy. The final set of 128 compounds from
docking were those below the estimated binding energy
value of –33 kcal/mol, and 21 were tested experimentally.
An unusual feature in their approach was to use only the
existing 3D conformer in the database (no generation of
alternative conformers), with the hope that the database was
sufficiently large enough to identify different subsets of
compounds that have, among other things, the right binding
conformation. The authors attempted to compare the hit rate
from docking to that from random screening by randomly
selecting 21 compounds from the same ACD dataset used in
docking. Their random screen yielded no compounds with <
100 µM IC50s (although 9 and 5 compounds were 500 and
100 µM, respectively).
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A study by Bissantz [130] compared different docking
methods (DOCK, FlexX, Gold) with several scoring
functions (Chemscore, DOCK, FlexX, Gold, Fresno, PMF,
Score) to determine the optimal combination for finding
known hits in a database for estrogen receptor (ER) and
thymidine kinase (TK). The authors found the best
combination of docking method-scoring function to be
Gold-DOCK for ER and Gold-Gold for TK. The two
databases for each target were created by appending 10
known active compounds each for TK and ER to a set of
990 randomly selected compounds from the ACD that were
filtered to remove chemical reagents, inorganics, and
molecular weights between 250 and 500. TK is considered
by the authors to be a "hard case" for docking as the binding
site is accessible to water, the side chains can adopt different
rotamer states depending on the ligand, and participation of
a water upon binding differs for purine and pyrimidine
substructures. ER, on the other hand, is considered by the
authors to be more suitable for docking because the binding
site is less exposed to solvent than TK, is less prone to
conformational changes upon binding, and is selective for
compounds with low nM affinity. The best docking method-
scoring function found in this study, Gold-DOCK, was able
to identify 9 of 10 true hits among the top 2% of scorers.
An observation by the authors was that the scoring functions
that were more robust in selecting TK compounds, FlexX
and PMF, were among the poorer discriminators of active
ER compounds. They also noted that FlexX and PMF
tended to perform well for the highly polar binding site of
TK, but DOCK was better for apolar active site of ER.
While they also found that consensus scoring [131] generally
outperforms single scoring functions, they proposed a two
step process of first identifying the optimal method-scoring
function combination on a small representative set of known
binders, and second, using this new combination for
database screening.

A recently published example used ICM to find 14 novel
antagonists of thyroid hormone nuclear receptor (TR)
ranging from 1.5 to 30 µM [125]. The authors docked
~190,000 compounds from the ACD that passed a Lipinksi
filter into a predicted model of the antagonist-bound
conformation of the TR ligand–binding region. A selection
of 1000 favorably docked structures that could interfere with
the active state of the receptor were selected and further
refined with energy minimization. A final 100 compounds
were selected based on shape complementarity, hydrogen-
bond network and flexibility for characterization by in vitro
assays, which resulted in the 14 novel antagonists that
appear structurally diverse in their paper. The authors
extended their work in this paper by designing a focused
virtual library of 101 compounds based on the top hit (Table
2) from the initial database screen. This virtual library was
screened with ICM against the same receptor as before, and
resulted in several new compounds with increased antagonist
activity over the initial compound.

Flexible Receptor Docking

There are a few papers describing recent methods for
flexible receptor docking [19]. One approach extends the
popular FlexX docking method to model the receptor as a
"united protein" representation of structures [112]. The

united protein approach takes a collection of receptor
structures (resulting from, for example, crystallography,
NMR, or molecular dynamics) and superimposes rigid
regions into one feature, but treats flexible regions as
discrete conformations from the collection. FlexE was
designed to work in cases where only relatively localized
motion occurs in the binding site, and was tested on 10
protein targets that included 105 crystal structures with
mostly bound and a few unbound ligands. The authors
showed that FlexE resulted in 67% of the ligands having an
RMSD of < 2.0 Å from the known crystallographic solution
(as compared to 63% for FlexX), and was faster than the
accumulated time from individual docking with FlexX. The
method is fully automated for allowing the user to identify
the most favorable docked ligand-receptor configuration.

Another flexible receptor method, ICM [109] was used
by Stigler and coworkers [132] to correctly predict the three-
dimensional structure of a complex between the monoclonal
antibody (mAb) TE33 and its cholera-toxin-derived peptide
epitope VPGSQHID [132]. The coordinates of TE33 used
for docking came from a co-crystal of TE33 and another
peptide. The binding sites of mAbs are typically shallow in
shape with a significant amount of the bound ligand exposed
to solvent, which can present a challenge for docking. The
authors allowed full flexibility during docking of dihedral
angles for backbone and side chains in the VPGSQHID
peptide, and side chains within 6Å of the bound ligand of
the initial co-crystal. Starting with a fully extended peptide,
ICM was able to produce a docked conformation that had a
backbone root-mean-square deviation of 1.9 Å to the crystal
structure. The ICM scoring function contains more terms
than are typically found in docking methods such as
conformational entropy, surface-based solvation, and
electrostatics desolvation via Poisson-Boltzmann solutions.
The increased complexity of the ICM scoring function may
be more beneficial for selecting actives from non-actives
from docking of databases.

Using Experimental Data to Enhance Docking

Exploiting experimental information during docking is a
useful approach for limiting docking solutions to those with
prerequisite attributes (e.g. binding mode or
pharmacophore). Relying only on docking for a lead is
challenging because methods do not systematically explore
all possible degrees of freedom and the scoring functions are
imperfect. Information that becomes available during drug-
design cycles, however, can be exploited by docking for
more plausible solutions. For example, Last-Barney et al.,
[133] used information from photoaffinity labeling of the
lymphocyte-function associated antigen-1 (LFA-1) integrin
to restrict the docking site to that centered on the residue
shown to be important in binding. In this paper, a
combination of docking with AutoDock, molecular
dynamics, and minimization led to a predicted binding
mode that was later confirmed by crystallography.

One approach that we will review in more detail for
exploiting experimental information during VS is by
Gruneberg and coworkers, who described an approach for
identifying nanomolar IC50 inhibitors of human carbonic
anhydrase II (hCAII) [124]. The hCAII enzyme is
characterized by a deep conical binding site containing a



1060    Mini-Reviews in Medicinal Chemistry, 2004, Vol. 4, No. 10 Chin et al.

coordinated Zn at the catalytic site. Their approach was the
following series of steps. First, filter a combined database
from Maybridge and LeadQuest using Lipinski rules (98,
850 compounds). Second, filter by functional groups known
to be important for Zn binding in other Zn proteases (5904
compounds). Third, determine pharmacophore sites in the
receptor by taking the geometric centers of various
interaction probes, and then filter by a flexible search for
those compounds that fit the pharmacophore (3314
compounds). Fourth, rank the compounds by 3D similarity
to two known tight binding reference ligands using FlexS
[134] (top 100 compounds chosen). Fifth, dock the
remaining 100 compounds into hCAII using FlexX. A final
set of 13 compounds, which were mostly from LeadQuest,
were selected based on visual inspections and tested
experimentally for IC50 inhibition of hCAII; three
compounds were sub-nM, one was nM, and seven were µM.
The authors noted that most of the hits in their final set
came from LeadQuest. While the preponderance of hit
ligands contained the known hCAII Zn-binding sulfonamide
moiety, the authors noted that side chains of this moiety can
still have a significant impact on binding potency with
hCAII, and that several of their leads were not previously
described in the patent literature. The predicted binding
modes of the ligands were in good agreement with those of
the crystallographic structures.

Scoring Functions

Docking is essentially made up of two components.
First, the algorithm used by the program for generating trial
binding modes, or poses, for each ligand. Second, the
scoring function used during docking for ranking these
poses. A post-processing step can occur where one or more
scoring functions are used to re-rank the poses, and select the
best pose among the ligands from a database. Results from
studies suggest that the search algorithms used in docking
will probably produce the true, or nearly true, binding mode
among the poses that are generated [19, 135-137]. It is the
ranking  of these compounds with respect to binding
constants by scoring functions, however, that is typically
where much of the problem with accuracy occurs [136, 137].
Scoring functions in docking are a trade-off between the fast
evaluation of ligand-receptor interactions needed for database
screening and accuracy. The limited accuracy is due in large
part to an incomplete understanding of complex ligand-
receptor interactions — and what is understood can be
computationally expensive — to an incomplete training set
for parameterization, and to a highly simplified
approximation (or omission) of important variables in
binding such as solvation.

There are three main classes of scoring functions. First,
molecular mechanics functions, such as AMBER [128],
OPLS [138], CHARMM [115, 139] and MMFF [140] are
the closest to first principles that are used in docking. These
functions are based on additive atomic parameters (van der
Waals, electrostatics, bonds, angles and torsions), usually
derived from quantum mechanical calculations, which are
assumed to be transferable between molecules containing
similar atom types. Second, empirical functions that are
calibrated to associate numbers of atomic or molecular
features (e.g. rotatable bonds, hydrogen-bond donors and

acceptors) with known binding data from training sets.
Third, knowledge-based functions, [141] which apply a
Boltzmann weighting to distributions of atom-atom
distances observed in crystal structures.

Each of the three classes of scoring functions has their
strengths and weaknesses in docking, [130, 136] and a few
relatively recent developments have attempted to address the
problems. For example, the popular consensus scoring
approach attempts to make up for deficiencies in any one
scoring function by using several different scoring functions
(e.g. up to five) at a time [131]. The method "ranks" a
compound by counting the number of individual scoring
functions that scored the compound favorably relative to a
threshold. For example, a compound that scored well in
three or more scoring functions is presumed to be "better"
than one that scored well in only two or less. Some of the
newer developments in scoring functions are to customize
the scoring functions for the system under study [13]. These
functions can be based either on classification or regression
algorithms, or be "hybrids" of others classes of scoring
functions that are parameterized by statistically fitting the
terms to available binding data (e.g. a binary output such as
active non-active, or a continuous value such as free energy)
[142]. For example, Stahl built an optimized combination of
FlexX and PLP in an attempt to balance the localized and
hydrogen bond features of FlexX and the lipophilic features
of PLP [136]. They found that this new combination
resulted in better enrichment of known hits among the top
scoring compounds than the individual scoring functions for
five out the seven target protein cases studied [136]. Another
example is the use of binary kernel discrimination (BKD) for
classifying actives and non-actives in virtual screening [143].
In this paper, the authors studied several combinations of
classification scoring functions and molecular fingerprints
and found that the BKD algorithm with UNITY [120]
fingerprints best classified actives and non-actives for the
NCI [144] and Syngenta [143] data sets.

Finally, we mention that more accurate methods of
ranking compounds exist such as binding free energy
perturbation methods [145]. Poisson-Boltzmann solvation
terms with molecular mechanics (MM/PBSA), [146] and the
less theoretically rigorous linear response free energy
methods [147]. These methods, however, are not yet
common for high throughput docking (but can be considered
for lower throughput) currently due to the high
computational cost, the unvalidated atomic parameters for
the types of diverse ligands found in drug databases, and the
increased complexity in setting up and using some of these
methods.

Perhaps the most important emerging trend in the recent
literature involving scoring functions is that they are clearly
target specific, and dependent on which physical factors are
important in binding for a given ligand-receptor interaction.
For example, Perez found molecular mechanics (AMBER) to
outperform PMF for 34 examples when a ligand from a co-
crystal is docked into its co-crystalline receptor, but similar
performance between these scoring functions when docking
close analogues to this ligand from a database into the same
receptor [148]. Muegge et al., however, found PMF to
outperform molecular mechanics (DOCK) when docking
weak ligands into the FK506 binding protein [149]. The
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discrepancy between these two studies probably reflects the
sensitivity of molecular mechanics functions to steric
clashes, which would favor cases where the ligand is docked
into its native receptor and reject analogue compounds;
PMF, a function that is more tolerant of these clashes,
would favor analogue compounds docked into a non-native
receptor. Stahl has reviewed FlexX, PLP, DrugScore and
PMF on seven protein targets finding that some scoring
functions are better suited for polar targets (FlexX) while
others work for lipophillic targets (DrugScore, PLP) [136].

INFORMATICS AND COMPUTING INFRASTRUC-
TURE

The integration of VS into drug discovery depends on
robust informatics infrastructure with the goal being to
convey information among VS and experimental groups
rapidly so that key decisions can be made in meaningful
ways. For example, the informatics system should minimize
any latency time between a chemist’s virtual library design,
the modelers’s use of high performance computing for VS
and analysis, and finally the reporting of the predicted hits
and 3D patterns back to the chemist. There have been a few
publications that have talked about this problem and
described several types of solutions, [13, 150] and there are
several companies heading in this direction with products
[40, 113, 115, 120, 151].

At Biogen Idec, we have also recently implemented a
solution in collaboration with Accelrys [115] of an
integrated VS environment (Fig. 2a) for increasing the
quality of compounds in drug-design cycles (Fig. 2b). The
main points are the following. First, a chemist can use a
desktop client and server architecture that is designed to
handle millions of compounds easily. From the desktop, the
user can design chemical libraries in flexible ways (e.g. in
silico chemistry or database queries), review molecular
properties, and filter compounds based on molecular
structure or properties, and submit the library for VS.
Second, the modeler can retrieve the submitted library from
the database and perform the necessary tasks for VS using a
75-node/150 CPU cluster running Linux. Many custom
"scripts" and data analyses are used by the modeler to
minimize time spent on virtual screening, and to quickly
determine rankings and ligand-receptor binding patterns,
which are then submitted back to the central database. Third,
the chemist can then review the VS results for their library
using the same desktop interface as before to browse quickly
through large number of docked compounds with 3D
graphics and interact with high dimensional plotting and
chemical spreadsheets.

High Performance Computing

The ability to routinely screen and filter massive virtual
libraries on the order of 106 compounds with the VS
methods described depends on the availability of high
performance computer hardware and supporting software
infrastructure. Screening large databases computationally can
be addressed due to the inherently parallel nature of the VS
problem. That is, computer processors can treat each
molecule progressing through enumeration, filtering,
conformer generation, and receptor docking independently.

Two hardware approaches have emerged to support
distributed parallel computing. The first employs dedicated
clusters consisting of a few to several hundred computational
nodes typically running Linux [152, 153]. The second,
termed Grid computing, [154, 155] exploits underutilized or
idle workstations and PCs in an organization to provide
computing power, potentially leveraging thousands of
computers for large database problems. Software vendors are
now providing functionality to take advantage of distributed
parallel computing, including software for 3D conformer
generation (for example Omega [113], Catalyst [115] and
Corina [156]), and docking (FlexX, Fred, Glide, DOCK,
ICM, and LigandFit), and filtering.

CONCLUSIONS

It remains to be seen what impact the new paradigm of
integrated drug discovery will have on the production of new
drugs. What is clear, though, is that highly publicized
technologies of the past 15 years such as computational
chemistry, combinatorial chemistry, and HTS have not by
themselves increased the new number of compounds entering
preclinical or Phase I development [6]. In fact the number of
new chemical entities (NCE) have declined over this time
despite skyrocketing investment in R&D [6]. The new
pharmaceutical strategy places a greater emphasis on the
quality of compounds entering experimental screening than
existed before by way of more intelligent utilization of the
confluence of available experimental and computational
information. The current direction of VS methods and
informatics approaches is to play a key role in processing the
large number of possibilities and predicting which
compounds are likely to succeed.

As more information about drug targets (including
structures), and drug or compound profiles become
increasingly available, it is likely that there will be more
emphasis on lead optimization than lead discovery. That is,
it may become routine to exploit existing data on a
particular target, gene-family of targets, or class of
compounds in predictive models or constraints in ways that
rapidly progress to new biologically relevant compounds
instead starting from scratch.

We have shown in this review that VS using docking
methods are becoming more validated for identifying active
compounds using a variety of docking algorithms, library
preparation techniques, and experimental information as
constraints. Published examples of the practical application
of in silico ADME methods in a pharmaceutical setting,
however, are rare despite the vast literature describing model
development and approaches. Until validated application
examples are available, it is difficult to gauge the actual cost
savings and efficiencies from the use of predictive ADME in
VS.

The availability of cluster and grid computing solutions
will make it possible to consider broader VS applications
involving sophisticated computational approaches that are
currently intractable for VS. With the computing power
available from a corporate-wide grid, it will be possible to
expand the VS workflow to include receptor flexibility,
[157, 158] entire protein target families, [159] anti-targets,
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Fig. (2). a).  A schematic for an integrated virtual chemistry and screening environment at Biogen Idec.  The desktop tools are
designed to allow users to easily and quickly design, filter, and review the results of virtual libraries containing up to millions of
compounds.  The interface also permits the review and sharing of chemistries among users. b). The workflow of virtual chemistry and
screening at Biogen.  The numbers of compounds are estimates to highlight the removal of compounds that do not pass a particular
filter or virtual screen.

[142] and more accurate estimates of ligand binding, [160-
166] or of possible sites for metabolism [167, 168].

Finally, a new definition for informatics in drug
discovery in the future will likely merge areas of chemo-,
bio-, and structural-informatics. Desktop systems that allow
seamless integration and interrogation of virtual chemistry,
predictive models, pattern analysis, VS results, and
biological data will permit better decisions about which

compounds should be made, and hopefully increase the
chances of designing more successful drugs.
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